Division and remainder operations performed on integers are susceptible to divide-by-zero errors. Consequently, the divisor in a division or remainder operation on integer types must be checked for zero prior to the operation. Division and remainder operations performed on floating-point numbers are not subject to this rule.
Noncompliant Code Example (Division)
The result of the /
operator is the quotient from the division of the first arithmetic operand by the second arithmetic operand. Division operations are susceptible to divide-by-zero errors. Overflow can also occur during two's-complement signed integer division when the dividend is equal to the minimum (negative) value for the signed integer type and the divisor is equal to −1 (see rule NUM00-J. Detect or prevent integer overflow for more information). This noncompliant code example can result in a divide-by-zero error during the division of the signed operands num1
and num2
:
...
A division or remainder by zero can result in abnormal program termination and denial-of-service (DoS).
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
NUM02-J | Low | Likely | Medium | P6 | L2 |
Automated Detection
Tool | Version | Checker | Description |
---|---|---|---|
Coverity | 7.5 | DIVIDE_BY_ZERO | Implemented |
Related Guidelines
Parasoft Jtest |
| CERT.NUM02.ZERO | Avoid division by zero | ||||||
PVS-Studio |
| V6020 | |||||||
SonarQube |
| S3518 | Zero should not be a possible denominator |
Related Guidelines
INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors
CWE-369, Divide by Zero |
Bibliography
Subclause 6.5.5, "Multiplicative Operators" | |
Chapter 5, "Integers" | |
[Seacord 2015] | |
Chapter 2, "Basics" |
...
...