Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Note
titleDeprecated

This guideline has been deprecated.  It has been merged with:

06/15/2015 -- Version 1.0

Programmers sometimes incorrectly believe that declaring a field or variable final makes the referenced object immutable. Declaring variables that have a primitive type to be final indeed prevents changes to their values after initialization (other than through the use of the unsupported sun.misc.Unsafe class). When the variable has a reference type, however, the presence or absence of a final clause in the declaration makes the reference itself immutable; the final clause lacks any effect whatsoever on the referenced object. Consequently, the fields of the referenced object could, in fact, be mutable. Similarly, a final method parameter obtains an immutable copy of the object reference; once again. Again, this lacks any has no effect on the mutability of the referenced data.

Wiki Markup
According to the Java Language Specification \[[JLS 2005|AA. Bibliography#JLS 05]\], [Section 4.12.4|http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.12.4], "{{final}} Variables"

... if a final variable holds a reference to an array, then the components of the array may be changed by operations on the array, but the variable will always refer to the same array.

Noncompliant Code Example (Mutable Class, final Reference)

In this noncompliant code example, the programmer has declared the reference to the point instance to be final under the incorrect assumption that doing so prevents modification of the values of the instance fields x and y. The values of the instance fields can be changed even after their initialization , even though because the final clause applies only to the reference to the point instance is declared to be finaland not to the referenced object.

Code Block
bgColor#ffcccc

class Point {
  private int x;
  private int y;

  Point(int x, int y) {
    this.x = x;
    this.y = y;
  }
  void set_xy(int x, int y) {
    this.x = x;
    this.y = y;
  }
  void print_xy() {
    System.out.println("the value x is: " + this.x);
    System.out.println("the value y is: " + this.y);
  }
}

public class PointCaller {
  public static void main(String[] args) {
    final Point point = new Point(1, 2);
    point.print_xy();

    // changeChange the value of x, y
    point.set_xy(5, 6);
    point.print_xy();
  }
}

When an object reference is declared final, it signifies only that the reference cannot be changed; the mutability of the referenced contents remains unaffected.

Compliant Solution (final Fields)

When the values of the x and y members instance variables must remain immutable after their initialization, they should be declared final. However, this requires the elimination of the setter method invalidates a set_xy(). method because it can no longer change the values of x and y:

Code Block
bgColor#ccccff

class Point {
  private final int x;
  private final int y;

  Point(int x, int y) {
    this.x = x;
    this.y = y;
  }
  void print_xy() {
    System.out.println("the value x is: " + this.x);
    System.out.println("the value y is: " + this.y);
  }

  // set_xy(int x, int y) no longer possible
}

With this modification, the values of the instance variables become immutable and consequently match the programmer's intended usage model.

Compliant Solution (Provide Copy Functionality)

If the class must remain mutable, another compliant solution is to provide copy functionality. This compliant solution provides a clone() method in the final class Point and does not require the class Point, avoiding the elimination of the setter method. :

Code Block
bgColor#ccccff

final public class Point implements Cloneable {
  private int x;
  private int y;

  Point(int x, int y) {
    this.x = x;
    this.y = y;
  }
  void set_xy(int x, int y) {
    this.x = x;
    this.y = y;
  }
  void print_xy() {
    System.out.println("the value x is: "+ this.x);
    System.out.println("the value y is: "+ this.y);
  }
  public Point clone() throws CloneNotSupportedException{
    Point cloned = (Point) super.clone();
    // No need to clone x and y as they are primitives
    return cloned;
  }
}

public class PointCaller {
  public static void main(String[] args) 
      throws CloneNotSupportedException {
    final Point point = new Point(1, 2);    // Is not changed in main()
    point.print_xy();
    
    // Get the copy of original object
    Point pointCopy = point.clone();
    // pointCopy now holds a unique reference to the 
    // newly cloned Point instance

    // Change the value of x,y of the copy.
    pointCopy.set_xy(5, 6);

    // Original value remains unchanged
    point.print_xy();
  }
}

The clone() method returns a copy of the original object and that reflects its the state of the original object at the moment of cloning. This new object can be freely used without exposing the original object. Using Because the caller holds the only reference to the newly cloned instance, the instance fields cannot be changed without the caller's cooperation. This use of the clone() method allows the class to remain securely mutable. (See guideline OBJ10OBJ04-J. Provide mutable classes with copy functionality to safely allow passing instances to untrusted code safely.)

The Point class is declared final to prevent subclasses from overriding the clone() method. This enables the class to be suitably used without any inadvertent modifications of the original object. This compliant solution complies with guideline OBJ10-J. Provide mutable classes with copy functionality to allow passing instances to untrusted code safely.

Noncompliant Code Example (Arrays)

This noncompliant code example uses a public static final array, items.

Code Block
bgColor#ffcccc

public static final String[] items = { ... };

Clients can trivially modify the contents of the array, even though declaring the array reference to be final prevents modification of the reference itself.

Compliant Solution (Clone the Array)

This compliant solution defines a private array and a public method that returns a copy of the array.

Code Block
bgColor#ccccff

private static final String[] items = { ... };

public static final String[] somethings() {
  return items.clone();
}

Consequently, the original array values cannot be modified by a client. Note that a manual deep copy could be required when dealing with arrays of objects. This generally happens when the objects do not export a clone() method. Refer to guideline FIO00-J. Defensively copy mutable inputs and mutable internal components for more information.

Compliant Solution (Unmodifiable Wrappers)

This compliant solution declares a private array from which a public immutable list is constructed.

Code Block
bgColor#ccccff

private static final String[] items = { ... };

public static final List<String> itemsList =
Collections.unmodifiableList(Arrays.asList(items));

Neither the original array values nor the public list can be modified by a client. For more details about unmodifiable wrappers, refer to guideline SEC14-J. Provide sensitive mutable classes with unmodifiable wrappers.

Risk Assessment

.

 

Applicability

Incorrectly assuming that final references cause Using final references to mutable objects can mislead unwary programmers because the contents of the referenced object to remain mutable .

Guideline

Severity

Likelihood

Remediation Cost

Priority

Level

OBJ01-J

low

probable

medium

P4

L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this guideline on the CERT website.

Related Guidelines

MITRE CWE: CWE-607 "Public Static Final Field References Mutable Object"

Bibliography

Wiki Markup
\[[Bloch 2008|AA. Bibliography#Bloch 08]\] Item 13: Minimize the accessibility of classes and members
\[[Core Java 2004|AA. Bibliography#Core Java 04]\] Chapter 6
\[[JLS 2005|AA. Bibliography#JLS 05]\] Sections [4.12.4 "final Variables"|http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.12.4] and [6.6 "Access Control"|http://java.sun.com/docs/books/jls/third_edition/html/names.html#6.6]

can result in an attacker modifying an object believed to be immutable.

Bibliography

[Bloch 2008]

Item 13, "Minimize the Accessibility of Classes and Members"

[Core Java 2004]

Chapter 6, "Interfaces and Inner Classes"

[JLS 2013]

§4.12.4, "final Variables"
§6.6, "Access Control"

 

...

Image Added Image Added Image AddedOBJ00-J. Declare data members as private and provide accessible wrapper methods      08. Object Orientation (OBJ)      OBJ02-J. Do not ignore return values of methods that operate on immutable objects