Namespaces introduce new declarative regions for declarations, reducing the likelihood of conflicting identifiers with other declarative regions. One feature of namespaces is that they can be further extended, even within separate translation units. For instance, the following declarations are well-formed.
namespace MyNamespace { int length; } namespace MyNamespace { int width; } void f() { MyNamespace::length = MyNamespace::width = 12; }
The standard library introduces the namespace std
for standards-provided declarations such as std::string
, std::vector
, and std::for_each
. However, it is undefined behavior to introduce new declarations in namespace std
except under special circumstances. The C++ Standard, [namespace.std], paragraphs 1 and 2 [ISO/IEC 14882-2014], states the following:
1 The behavior of a C++ program is undefined if it adds declarations or definitions to namespace
std
or to a namespace within namespacestd
unless otherwise specified. A program may add a template specialization for any standard library template to namespacestd
only if the declaration depends on a user-defined type and the specialization meets the standard library requirements for the original template and is not explicitly prohibited.2 The behavior of a C++ program is undefined if it declares
— an explicit specialization of any member function of a standard library class template, or
— an explicit specialization of any member function template of a standard library class or class template, or
— an explicit or partial specialization of any member class template of a standard library class or class template.
In addition to restricting extensions to the the namespace std
, the C++ Standard, [namespace.posix], paragraph 1, further states the following:
The behavior of a C++ program is undefined if it adds declarations or definitions to namespace
posix
or to a namespace within namespaceposix
unless otherwise specified. The namespaceposix
is reserved for use by ISO/IEC 9945 and other POSIX standards.
Do not add declarations or definitions to the standard namespaces std
or posix
, or to a namespace contained therein, except for a template specialization that depends on a user-defined type that meets the standard library requirements for the original template.
The Library Working Group, responsible for the wording of the Standard Library section of the C++ Standard, has an unresolved issue on the definition of user-defined type. Although the Library Working Group has no official stance on the definition [INCITS 2014], we define it to be any class
, struct
, union
, or enum
that is not defined within namespace std
or a namespace contained within namespace std
. Effectively, it is a user-provided type instead of a standard library–provided type.
Noncompliant Code Example
In this noncompliant code example, the declaration of x
is added to the namespace std
, resulting in undefined behavior.
namespace std { int x; }
Compliant Solution
This compliant solution assumes the intention of the programmer was to place the declaration of x
into a namespace to prevent collisions with other global identifiers. Instead of placing the declaration into the namespace std
, the declaration is placed into a namespace without a reserved name.
namespace nonstd { int x; }
Noncompliant Code Example
In this noncompliant code example, a template specialization of std::plus
is added to the namespace std
in an attempt to allow std::plus
to concatenate a std::string
and MyString
object. However, because the template specialization is of a standard library–provided type (std::string
), this code results in undefined behavior.
#include <functional> #include <iostream> #include <string> class MyString { std::string data; public: MyString(const std::string &data) : data(data) {} const std::string &get_data() const { return data; } }; namespace std { template <> struct plus<string> : binary_function<string, MyString, string> { string operator()(const string &lhs, const MyString &rhs) const { return lhs + rhs.get_data(); } }; } void f() { std::string s1("My String"); MyString s2(" + Your String"); std::plus<std::string> p; std::cout << p(s1, s2) << std::endl; }
Compliant Solution
The interface for std::plus
requires that both arguments to the function call operator and the return type are of the same type. Because the attempted specialization in the noncompliant code example results in undefined behavior, this compliant solution defines a new std::binary_function
derivative that can add a std::string
to a MyString
object without requiring modification of the namespace std
.
#include <functional> #include <iostream> #include <string> class MyString { std::string data; public: MyString(const std::string &data) : data(data) {} const std::string &get_data() const { return data; } }; struct my_plus : std::binary_function<std::string, MyString, std::string> { std::string operator()(const std::string &lhs, const MyString &rhs) const { return lhs + rhs.get_data(); } }; void f() { std::string s1("My String"); MyString s2(" + Your String"); my_plus p; std::cout << p(s1, s2) << std::endl; }
Compliant Solution
In this compliant solution, a specialization of std::plus
is added to the std
namespace, but the specialization depends on a user-defined type and meets the Standard Template Library requirements for the original template, so it complies with this rule. However, because MyString
can be constructed from std::string
, this compliant solution involves invoking a converting constructor whereas the previous compliant solution does not.
#include <functional> #include <iostream> #include <string> class MyString { std::string data; public: MyString(const std::string &data) : data(data) {} const std::string &get_data() const { return data; } }; namespace std { template <> struct plus<MyString> { MyString operator()(const MyString &lhs, const MyString &rhs) const { return lhs.get_data() + rhs.get_data(); } }; } void f() { std::string s1("My String"); MyString s2(" + Your String"); std::plus<MyString> p; std::cout << p(s1, s2).get_data() << std::endl; }
Risk Assessment
Altering the standard namespace can cause undefined behavior in the C++ standard library.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
DCL58-CPP | High | Unlikely | Medium | P6 | L2 |
Automated Detection
Tool | Version | Checker | Description |
---|---|---|---|
Axivion Bauhaus Suite | 7.2.0 | CertC++-DCL58 | |
CodeSonar | 8.1p0 | LANG.STRUCT.DECL.SNM | Modification of Standard Namespaces |
Helix QAC | 2024.4 | C++3180, C++3181, C++3182 | |
Klocwork | 2024.4 | CERT.DCL.STD_NS_MODIFIED | |
Parasoft C/C++test | 2023.1 | CERT_CPP-DCL58-a | Do not modify the standard namespaces 'std' and 'posix' |
Polyspace Bug Finder | R2024a | CERT C++: DCL58-CPP | Checks for modification of standard namespaces (rule fully covered) |
PVS-Studio | 7.34 | V1061 | |
SonarQube C/C++ Plugin | 4.10 | S3470 |
Related Vulnerabilities
Search for other vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
Bibliography
[INCITS 2014] | Issue 2139, "What Is a User-Defined Type?" |
[ISO/IEC 14882-2014] | Subclause 17.6.4.2.1, "Namespace std "Subclause 17.6.4.2.2, "Namespace posix " |
2 Comments
Csaba Beres
The first code example probably presents that a namespace can be extended, but mistakenly uses the same name for the variables. This is ill-formed. In the version#24 two different names (I and J) were used. Probably someone wanted to help, increase the quality of the code by changing the UPPERCASE variable names to lowercase ones, but changed them both to have the same name.
I suggest something definitely different like "age" and "length".
David Svoboda
Agreed, the code in the introduction would not compile as is. I adopted your suggestion.