You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 44 Next »

Iterators are a generalization of pointers that allow a C++ program to work with different data structures (containers) in a uniform manner [ISO/IEC 14882-2014]. Pointers, references, and iterators share a close relationship in which it is required that referencing values through such an object must be done through a valid value. Storing an iterator, reference, or pointer to an element within a container for any length of time comes with a risk that the underlying container may be modified such that the stored value is invalidated. For instance, when a sequence container such as std::vector requires an underlying reallocation, outstanding iterators and references will be invalidated [Kalev 99]. Only use a valid pointer, reference, or iterator to refer to an element of a container.

According to the C++ Standard, [container.requirements.general], paragraph 12 [ISO/IEC 14882-2014]: 

Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

The following container functions can invalidate iterators, references and/or pointers under certain circumstances:

ClassFunctionIteratorsReferencesPointersNotes
std::deque     
 insert(), emplace_front(), emplace_back(),
emplace(), push_front(), push_back()
XX 

An insertion in the middle of the deque invalidates all the iterators and references to elements of the deque. An insertion at either end of the deque invalidates all the iterators to the deque, but has no effect on the validity of references to elements of the deque. ([deque.modifiers], paragraph 1)

 erase(), pop_back(), resize()XX 

An erase operation that erases the last element of a deque invalidates only the past-the-end iterator and all iterators and references to the erased elements. An erase operation that erases the first element of a deque but not the last element invalidates only the erased elements. An erase operation that erases neither the first element nor the last element of a deque invalidates the past-the-end iterator and all iterators and references to all the elements of the deque. ([deque.modifiers], paragraph 4)

 clear()XXX

Destroys all elements in a. Invalidates all references, pointers, and iterators referring to the elements of a and may invalidate the
past-the-end iterator. ([sequence.reqmts], Table 100)

std::forward_list     
 erase_after(), pop_front(), resize()XX ...erase_after shall invalidate only iterators and references to the erased elements. ([forwardlist.modifiers], paragraph 1)
 remove(), unique()XX 

Invalidates only the iterators and references to the erased elements. ([forwardlist.ops], paragraph 12 & paragraph 16)

 clear()XXXDestroys all elements in a. Invalidates all references, pointers, and iterators referring to the elements of a and may invalidate the
past-the-end iterator. ([sequence.reqmts], Table 100)
std::list     
 erase(), pop_front(), pop_back(), clear(), remove(), remove_if(), unique()XX Invalidates only the iterators and references to the erased elements. ([list.modifiers], paragraph 3 and [list.ops], paragraph 15 & paragraph 19)
 clear()XXXDestroys all elements in a. Invalidates all references, pointers, and iterators referring to the elements of a and may invalidate the
past-the-end iterator. ([sequence.reqmts], Table 100)
std::vector     
 reserve()XXX

After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. ([vector.capacity], paragraph 3 & paragraph 6)

 insert(), emplace_back(), emplace(), push_back()XX 

Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the iterators and references before the insertion point remain valid. ([vector.modifiers], paragraph 1). All iterators and references after the insertion point are invalidated.

 erase(), pop_back(), resize()XX Invalidates iterators and references at or after the point of the erase. ([vector.modifiers], paragraph 3)
 clear()XXXDestroys all elements in a. Invalidates all references, pointers, and iterators referring to the elements of a and may invalidate the
past-the-end iterator. ([sequence.reqmts], Table 100)
std::set, std::multiset, std::map, std::multimap     
 erase(), clear()XX Only invalidates iterators and references to the erased elements. ([associative.reqmts], paragraph 9)

std::unordered_set, std::unordered_multiset, std::unordered_map, std::unordered_multimap

     
 erase(), clear()XX Only invalidates iterators and references to the erased elements. ([unord.req], paragraph 14)
 insert(), emplace()X  

The insert and emplace members shall not affect the validity of iterators if (N+n) < z * B, where N is the number of elements in the container prior to the insert operation, n is the number of elements inserted, B is the container’s bucket count, and z is the container’s maximum load factor. ([unord.req], paragraph 15)

 rehash(), reserve()X  

Rehashing invalidates iterators, changes ordering between elements, and changes which buckets elements appear in, but does not invalidate pointers or references to elements. ([unord.req], paragraph 9)

(Note, this list is currently incomplete and needs further editing.)

A std::basic_string object is also a container for which this rule applies. For more specific information pertaining to std::basic_string containers, see STR38-CPP. Use valid references, pointers, and iterators to reference elements of a basic_string.

Noncompliant Code Example

In this noncompliant code example, pos is invalidated after the call to insert(), and subsequent loop iterations have undefined behavior:

#include <deque>
 
void f(const double *items, std::size_t count) {
  std::deque<double> d;
  auto pos = d.begin();
  for (std::size_t i = 0; i < count; ++i, ++pos) {
    d.insert(pos, items[i] + 41.0);
  }
}

Compliant Solution (Updated Iterator)

In this compliant solution, pos is assigned a valid iterator on each insertion, removing the undefined behavior:

#include <deque>
 
void f(const double *items, std::size_t count) {
  std::deque<double> d;
  auto pos = d.begin();
  for (std::size_t i = 0; i < count; ++i, ++pos) {
    pos = d.insert(pos, items[i] + 41.0);
  }
}

Compliant Solution (Generic Algorithm)

This compliant solution replaces the hand-written loop with the generic STL algorithm std::transform. The call to std::transform accepts the range of elements to transform, the location of where to store the transformed values (which, in this case, is a std::inserter object to insert them at the beginning of d), and the transformation function to apply (which, in this case, is a simple lambda).

#include <deque>
#include <algorithm>
#include <iterator>
 
void f(const double *items, std::size_t count) {
  std::deque<double> d;
  std::transform(items, items + count, std::inserter(d, d.begin()),
                 [](double d) { return d + 41.0; });
}

Noncompliant Code Example

In this noncompliant code example, data is invalidated after the call to replace(), and so its use in g() is undefined behavior:

#include <iostream>
#include <string>
 
extern void g(const char *);
 
void f(std::string &example_string) {
  const char *data = example_string.data();
  // ...
  example_string.replace(0, 2, "bb");
  // ...
  g(data);

}

Compliant Solution

In this compliant solution, the pointer to example_string's internal buffer is not generated until after the modifications from replace() have completed:

#include <iostream>
#include <string>

extern void g(const char *);

void f(std::string &example_string) {
  // ...
  example_string.replace(0, 2, "bb");
  // ...
  g(example_string.data());
}

Risk Assessment

Using invalid references, pointers, or iterators to reference elements of a container results in undefined behavior.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

CTR32-CPP

High

Probable

High

P6

L2

Automated Detection

Tool

Version

Checker

Description

    

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Bibliography

[ISO/IEC 14882-2014]

23, "Containers Library"
24.2.1, "In General" 

[Meyers 01]Item 43: Prefer algorithm calls to hand-written loops
[Sutter 04]Item 84: Prefer algorithm calls to handwritten loops
[Kalev 99]ANSI/ISO C++ Professional Programmer's Handbook

 


  • No labels