The Collections Framework interfaces use generically typed parameterized methods such as add(E e)
or put(K key, V value)
to insert objects into the collection/map, but have other methods such as contains()
, remove()
, or get()
that accept an argument of type Object
rather than of type E
or K
allowing a programmer to attempt to remove an object of any type. The Collections Framework Interfaces were designed in this manner to maximize backwards compatibility, but can also lead to coding errors. Programmers must ensure that arguments passed to methods such as the Map<K,V>
get()
method or the Collection<E>
contains()
, or remove()
methods have the same type as the parameterized type of the corresponding class instance.
Noncompliant Code Example
After adding then removing 10 elements, the HashSet
in this noncompliant code example still contains 10
elements and not the expected 0. Java's type checking requires that only values of type Short
can be inserted into s. Consequently, the programmer has added a cast to short
so that the code will compile. However, the Collections<E>.remove()
method accepts an argument of type Object
rather than of type E
allowing a programmer to attempt to remove an object of any type. In this noncompliant code example, the programmer has neglected to also cast the variable i
before passing it to the remove()
method which is autoboxed into an object of type Integer
rather than one of type Short
. The HashSet
contains only values of type Short
; the code attempts to remove objects of type Integer
. Consequently, the remove()
method has no effect.
import java.util.HashSet; public class ShortSet { public static void main(String[] args) { HashSet<Short> s = new HashSet<Short>(); for (int i = 0; i < 10; i++) { s.add((short)i); // cast required so that the code compiles s.remove(i); // tries to remove an Integer } System.out.println(s.size()); } }
This noncompliant code example also violates EXP00-J. Do not ignore values returned by methods because the remove()
method returns a boolean
value.
Compliant Solution
Objects removed from a collection must share the type of the elements of the collection. Numeric promotion and autoboxing can produce unexpected object types. This compliant solution uses an explicit cast to short
that matches the intended boxed type.
import java.util.HashSet; public class ShortSet { public static void main(String[] args) { HashSet<Short> s = new HashSet<Short>(); for (int i = 0; i < 10; i++) { s.add((short)i); // remove a Short if (s.remove((short)i) == false) { System.err.println("Error removing " + i); } } System.out.println(s.size()); } }
Exceptions
EXP04-EX0: The Collections Framework equals()
method also takes an argument of type Object
, but it is acceptable to pass an object of a different type from that of the underlying collection/map to the equals()
method. This cannot cause any confusion because an object of a different type from that of the collection/map will always compare unequal with an object of the type of the collection/map.
Risk Assessment
Passing arguments to certain Collection Framework methods that are of a different type from that of the class instance can cause silent failures, resulting in unintended object retention, memory leaks, or incorrect program operation [Techtalk 2007].
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
EXP04-J | low | probable | low | P6 | L2 |
Automated Detection
Detection of invocations of Collection.remove()
whose operand fails to match the type of the elements of the underlying collection is straightforward. It is possible, although unlikely, that some of these invocations could be intended. The remainder are heuristically likely to be in error. Automated detection for other APIs could be possible.
Bibliography
Chapter 5 | |
[JLS 2005] | |
The Joy of Sets |
02. Expressions (EXP) EXP05-J. Do not write more than once to the same variable within an expression