The Java compiler type-checks the arguments to each variable arity (varargs) method to ensure that the arguments are of the same type or object reference. However, the compile-time checking is ineffective when Object
or generic parameter types are used [Bloch 2008]. The presence of initial parameters of specific types is irrelevant; the compiler will remain unable to check Object
or generic variable arity parameter types. Enable strong compile-time type checking of variable arity methods by using the most specific type possible for the type of the method parameter.
Noncompliant Code Example (Object
)
This noncompliant code example sums a set of numbers using a variable arity method using Object
. It accepts an arbitrary mix of parameters of any object type. Legitimate uses of such declarations are rare (but see below in the "Applicability" section).
double sum(Object... args) { double result = 0.0; for (Object arg : args) { if (arg instanceof Byte) { result += ((Byte) arg).byteValue(); } else if (arg instanceof Short) { result += ((Short) arg).shortValue(); } else if (arg instanceof Integer) { result += ((Integer) arg).intValue(); } else if (arg instanceof Long) { result += ((Long) arg).longValue(); } else if (arg instanceof Float) { result += ((Float) arg).floatValue(); } else if (arg instanceof Double) { result += ((Double) arg).doubleValue(); } else { throw new ClassCastException(); } } return result; }
Noncompliant Code Example (Generic Type)
This noncompliant code example declares the same variable arity method using a generic type parameter. It accepts a variable number of parameters that are all of the same object type; however that may be any object type. Again, legitimate uses of such declarations are rare.
<T> double sum(T... args) { // ... }
Compliant Solution
This compliant solution defines the same method, but uses the Number
type. This abstract class is general enough to encompass all numeric types, yet specific enough to exclude non-numeric types.
double sum(Number... args) { // ... }
Compliant Solution (generic)
This compliant solution defines the same generic method using the Number
type.
<T extends Number> double sum(T... args) { // ... }
Be as specific as possible when declaring parameter types; avoid Object
and imprecise generic types in variable arity methods. Retrofitting old methods containing final array parameters with generically typed variable arity parameters is not always a good idea. For example, given a method that does not accept an argument of a particular type, it could be possible to override the compile-time checking—through the use of generic variable arity parameters—so that the method would compile cleanly rather than correctly, causing a runtime error [Bloch 2008].
Also, note that autoboxing prevents strong compile-time type checking of primitive types and their corresponding wrapper classes. For instance, this compliant solution producues the following warning, but works as expected:
Java.java:10: warning: [unchecked] Possible heap pollution from parameterized vararg type T
<T extends Number> double sum(T... args) {
Applicability
Injudicious use of variable arity parameter types prevents strong compile-time type checking, creates ambiguity, and diminishes code readability.
Variable arity signatures using Object
and imprecise generic types are acceptable when the body of the method lacks both casts and auto-boxing, and also compiles without error. Consider the following example, which operates correctly for all object types and type-checks successfully:
<T> Collection<T> assembleCollection(T... args) { return new HashSet<T>(Arrays.asList( args)); }
In some circumstances, it is necessary to use a variable arity parameter of type Object
. A good example of this is the method java.util.Formatter.format(String format, Object... args)
which can format objects of any type.
Automated detection is straightforward.
Bibliography
Item 42, "Use Varargs Judiciously" | |
"Using the Varargs Language Feature" | |
[Sun 2006] |