Declaring shared variables as volatile ensures visibility and limits reordering of accesses. Volatile accesses do not guarantee the atomicity of composite operations such as incrementing a variable (CON01-J. Do not assume that composite operations on primitive data are atomic).
Declaring variables as volatile
establishes a happens-before relationship such that a write to the volatile
variable is always seen by a subsequent read. Statements that occur before the write to the volatile
field also happen-before the read of the volatile
field.
Consider two threads that are executing some statements:
Thread 1 and Thread 2 have a happens-before relationship such that Thread 2 does not start before Thread 1 finishes. This is established by the semantics of volatile
accesses.
In this example, Statement 3 writes to a volatile
variable, and statement 4 in the second thread, reads the same volatile
variable. The read sees the most recent write (to the same variable v
) from statement 3.
Volatile read and write operations cannot be reordered with respect to each other and also with respect to nonvolatile variables accesses. When Thread 2 reads the volatile
variable it sees the results of all the writes occurring before the write to the volatile
variable in Thread 1.
However, this does not mean that statements 1 and 2 are executed in the order in which they appear in the program. They may be freely reordered by the compiler. In fact, if statement 1 constituted a read of some variable x
, it could see the value of a future write to x
in statement 2. These stronger volatile semantics, however, increases the cost of volatile almost to cost of synchronization.
The possible reorderings between volatile
and nonvolatile variables are summarized in the matrix shown below. The load and store operations correspond to read and write operations that use the variable. [[Lea 08]]
Noncompliant Code Example (status flag)
This noncompliant code example uses a shutdown()
method to set a non-volatile done
flag that is checked in the run()
method. If one thread invokes the shutdown()
method to set the flag, it is possible that another thread might not observe this change. Consequently, the second thread may still observe that done
is false
and incorrectly invoke the sleep()
method.
final class ControlledStop implements Runnable { private boolean done = false; public void run() { while (!done) { try { // ... Thread.currentThread().sleep(1000); // Do something } catch(InterruptedException ie) { // handle exception } } } protected void shutdown(){ done = true; } }
Compliant Solution (volatile
status flag)
This compliant solution qualifies the done
flag as volatile
so that updates by one thread are immediately visible to another thread.
final class ControlledStop implements Runnable { private volatile boolean done = false; // ... }
Noncompliant Code Example (nonvolatile guard)
This noncompliant code example declares a nonvolatile variable of type int
which is initialized in the constructor depending on a security check.
class BankOperation { private int balance = 0; private boolean initialized = false; public BankOperation() { if (!performAccountVerification()) { throw new SecurityException("Invalid Account"); } balance = 1000; initialized = true; } private int getBalance() { if (initialized == true) { return balance; } else { return -1; } } }
In a multi-threading scenario, it is possible that the statements will be reordered so that the boolean
flag initialized
is set to true
before the initialization has concluded. If it is possible to obtain a partially initialized instance of the class in a subclass using a finalizer attack (OBJ04-J. Do not allow partially initialized objects to be accessed), a race condition can be exploited by invoking the getBalance()
method to obtain the balance even though initialization is still underway.
Compliant Solution (volatile
guard)
This compliant solution declares the initialized
flag as volatile
to ensure that the initialization statements are not reordered.
class BankOperation { private int balance = 0; private volatile boolean initialized = false; // Declared volatile // ... }
The use of the volatile
keyword is inappropriate for composite operations on shared variables (CON01-J. Do not assume that composite operations on primitive data are atomic).
Noncompliant Code Example (visibility)
This noncompliant code example consists of two classes, an immutable ImmutablePoint
class and a mutable Holder
class.
class Holder { ImmutablePoint ipoint; Holder(ImmutablePoint ip) { ipoint = ip; } ImmutablePoint getPoint() { return ipoint; } void setPoint(ImmutablePoint ip) { this.ipoint = ip; } } public class ImmutablePoint { final int x; final int y; public ImmutablePoint(int x, int y) { this.x = x; this.y = y; } }
Holder
is mutable because a new ImmutablePoint
instance can be assigned to it using the setPoint()
method. If one thread updates the value of the ipoint
field, another thread may still see the reference of the old value. This is a violation of CON28-J. Do not assume that classes having only immutable members are immutable.
Compliant Solution (visibility)
This compliant solution declares the ipoint
field as volatile
so that updates are immediately visible to other threads.
class Holder { volatile ImmutablePoint ipoint; Holder(ImmutablePoint ip) { ipoint = ip; } ImmutablePoint getPoint() { return ipoint; } void setPoint(ImmutablePoint ip) { this.ipoint = ip; } }
Note that no synchronization is necessary for the setPoint()
method because it operates atomically on immutable data, that is, on an instance of ImmutablePoint
.
Declaring immutable fields as volatile
enables their safe publication, in that, once published, it is impossible to change the state of the sub-object.
Noncompliant Code Example (partial initialization)
Thread-safe classes (which may not be strictly immutable) must not use nonfinal and nonvolatile fields to ensure that no thread sees any field references before the sub-objects' initialization has concluded. This noncompliant code example does not declare the map
field as volatile
or final
. Consequently, a thread that invokes the get()
method may observe the value of field map
before initialization has concluded.
public class Container<K,V> { Map<K,V> map; public synchronized void initialize() { if(map == null) { map = new HashMap<K,V>(); // Fill some useful values into HashMap } } public V get(Object k) { if(map != null) { return map.get(k); } else { return null; } } }
Compliant Solution (proper initialization)
This compliant solution declares the map
field as volatile
to ensure other threads see an up-to-date HashMap
reference.
public class Container<K,V> { volatile Map<K,V> map; // ... }
Alternative solutions to using volatile
for safe publication are discussed in CON26-J. Do not publish partially-constructed objects.
Risk Assessment
Failing to use volatile to guarantee visibility of shared values across multiple thread and prevent reordering of accesses can result in unpredictable control flow.
Rule |
Severity |
Likelihood |
Remediation Cost |
Priority |
Level |
---|---|---|---|---|---|
CON00- J |
medium |
probable |
medium |
P8 |
L2 |
Automated Detection
TODO
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
[[JLS 05]] Chapter 17, Threads and Locks, section 17.4.5 Happens-before Order, section 17.4.3 Programs and Program Order, section 17.4.8 Executions and Causality Requirements
[[Tutorials 08]] Java Concurrency Tutorial
[[Lea 00]] Sections, 2.2.7 The Java Memory Model, 2.2.5 Deadlock, 2.1.1.1 Objects and locks
[[Bloch 08]] Item 66: Synchronize access to shared mutable data
[[Goetz 06]] 3.4.2. "Example: Using Volatile to Publish Immutable Objects"
[[JPL 06]] 14.10.3. "The Happens-Before Relationship"
[[MITRE 09]] CWE ID 667 "Insufficient Locking", CWE ID 413 "Insufficient Resource Locking", CWE ID 366 "Race Condition within a Thread", CWE ID 567 "Unsynchronized Access to Shared Data"
11. Concurrency (CON) 11. Concurrency (CON) CON02-J. Always synchronize on the appropriate object