Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Holding locks while performing time-consuming or blocking operations can severely degrade system performance and can result in starvation. Furthermore, deadlock may   can result if too many interdependent threads block indefinitely. Blocking operations include network, file, and console I/O (for example, invoking a method such as Console.readLine()) , and object serialization. Deferring a thread indefinitely also constitutes a blocking operation. Consequently, programs must not perform blocking operations while holding a lock.

When the Java Virtual Machine Wiki MarkupIf the Java Virtual Machine (JVM) interacts with a file system that operates over an unreliable network, file I/O might incur a large performance penalty. In such cases, avoid file I/O over the network when while holding a lock. File operations (such as logging) that may could block while waiting for the output stream lock or for I/O to complete may could be performed in a dedicated thread to speed up task processing. Logging requests can be added to a queue given , assuming that the queue's {{put()}} operation incurs little overhead as compared to file I/O \ [[Goetz 06, pg 244|AA. Java References#Goetz 06]\Goetz 2006].

Noncompliant Code Example (

...

Deferring a

...

Thread)

This noncompliant code example defines a utility method that accepts a time parameter. argument:

Code Block
bgColor#FFCCCC

public synchronized void doSomething(long time)
                         throws InterruptedException {
  // ...
  Thread.sleep(time);
}

Because the method is synchronized, if when the thread is suspended, other threads are unable to cannot use the synchronized methods of the class. The current object's monitor is not released continues to be held because the Thread.sleep() method does not have any synchronization semantics, as detailed in CON16-J. Do not assume that the sleep(), yield() or getState() methods provide lacks synchronization semantics.

Compliant Solution (

...

Intrinsic Lock)

This compliant solution defines the doSomething() method with a timeout parameter instead of rather than the time value. The use of the Using Object.wait() method instead of Thread.sleep() allows setting a time out for a timeout period during which a notification may awaken the thread.

Code Block
bgColor#ccccff

public synchronized void doSomething(long timeout)
                                     throws InterruptedException {
// ...
  while (<condition does not hold>) {
    wait(timeout); // Immediately leavesreleases the current monitor
  }
}

The current object's monitor is immediately released upon entering the wait state. After When the time out timeout period has elapsedelapses, the thread attempts to reacquire resumes execution after reacquiring the current object's monitor and resumes execution when it succeeds.

Wiki MarkupAccording to the Java API class {{Object}} documentation \[[API 06|AA. Java References#API 06]\]: Class Object documentation [API 2014]

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor.

Ensure that a thread that holds Programs must ensure that threads that hold locks on other objects releases them release those locks appropriately , before entering the wait state. Also, refer to the related guidelines CON18Additional guidance on waiting and notification is available in THI03-J. Always invoke wait() and await() methods inside a loop and CON19THI02-J. Notify all waiting threads instead of rather than a single thread.

Noncompliant Code Example (Network I/O)

This noncompliant code example shows the method defines a sendPage() method that sends a Page object from a server to a client. The method is synchronized so that to protect the pageBuff array pageBuff is accessed safely when multiple threads request concurrent access.

Code Block
bgColor#FFcccc

// Class Page is defined separately. 
// It stores and returns the Page name via getName()
Page[] pageBuff = new Page[MAX_PAGE_SIZE];

public synchronized boolean sendPage(Socket socket, String pageName) 
                                     throws IOException {
  // Get the output stream to write the Page to
  ObjectOutputStream out 
      = new ObjectOutputStream(socket.getOutputStream());

  // Find the Page requested by the client
  // (this operation requires synchronization)
  Page targetPage = null;
  for (Page p : pageBuff) {
    if (p.getName().compareTo(pageName) == 0) {
      targetPage = p;
    }
  }

  // Requested Page does not exist
  if (targetPage == null) {
    return false;
  } 

  // Send the Page to the client
  // (does not require any synchronization)
  out.writeObject(targetPage);

  out.flush();
  out.close();
  return true;
}

Calling writeObject() within the synchronized sendPage() method can result in delays and deadlock-like conditions in high-latency networks or when network connections are inherently lossy.

Compliant Solution

This compliant solution entails separating separates the actions process into a sequence of steps:

  1. Perform actions on data structures requiring synchronization.
  2. Create copies of the objects

...

  1. to be sent.
  2. Perform network calls in a separate

...

  1. unsynchronized method.

In this compliant solution, the unsynchronized sendPage() method calls the synchronized method getPage() is called from an unsynchronized method sendPage(), to find retrieve the requested Page in the pageBuff array. After the Page is retrieved, the method sendPage() calls the unsynchronized method deliverPage() method to deliver the Page to the client.

Code Block
bgColor#ccccff
// No synchronization
public boolean sendPage(Socket socket, String pageName) { // No synchronization
  Page targetPage = getPage(pageName); 

  if (targetPage == null){
    return false;
  }
  return deliverPage(socket, targetPage);
}

// Requires synchronization
private synchronized Page getPage(String pageName) { // Requires synchronization
  Page targetPage = null;

  for (Page p : pageBuff) {
    if (p.getName().equals(pageName)) {
      targetPage = p;
    }
  }
  return targetPage;
}

// Return false if an error occurs, true if successful
public boolean deliverPage(Socket socket, Page page) {
  ObjectOutputStream out = null;
  boolean result = true;
  try {
    // Get the output stream to write the Page to
    ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());

    // Send the Pagepage to the client
    out.writeObject(page);out.flush();

  } catch (IOException io) {
    // If recovery is not possible return false
    return false;    
  } finally {
    out.flushresult = false;
  } finally {
    if (out != null) {
      try {
        out.close();
    out.close();  } catch (IOException e) {
        result = false;
      }
    }
  }
  return trueresult;
}

Exceptions

EX1LCK09-J-EX0: Classes that are compliant with the guideline CON24provide an appropriate termination mechanism to callers are permitted to violate this rule (see THI04-J. Ensure that threads and tasks performing blocking operations can be terminated in that they provide an appropriate termination mechanism to callers, are allowed to violate this guideline.).

LCK09-J-EX1: Methods that require EX2: A method that requires multiple locks may hold several locks while waiting for the remaining locks to become available. This constitutes a valid exception, though care must be taken to avoid deadlock. See CON12although the programmer must follow other applicable rules, especially LCK07-J. Avoid deadlock by requesting and releasing locks in the same order for more information to avoid deadlock .

Risk Assessment

If blocking Blocking or time consuming lengthy operations are performed within synchronized regions , temporary or permanent deadlock may resultcould result in a deadlocked or unresponsive system.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

CON20

LCK09-J

low

Low

probable

Probable

high

High

P2

L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Wiki Markup
\[[API 06|AA. Java References#API 06]\] Class {{Object}}
\[[Grosso 01|AA. Java References#Grosso 01]\] [Chapter 10: Serialization|http://oreilly.com/catalog/javarmi/chapter/ch10.html]
\[[JLS 05|AA. Java References#JLS 05]\] [Chapter 17, Threads and Locks|http://java.sun.com/docs/books/jls/third_edition/html/memory.html]
\[[Rotem 08|AA. Java References#Rotem 08]\] [Falacies of Distributed Computing Explained|http://www.rgoarchitects.com/Files/fallacies.pdf]

Automated Detection

Some static analysis tools are capable of detecting violations of this rule.

ToolVersionCheckerDescription
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

JAVA.CONCURRENCY.STARVE.BLOCKING

Blocking in Critical Section (Java)

Parasoft Jtest
Include Page
Parasoft_V
Parasoft_V
CERT.LCK09.TSHL
CERT.LCK09.TSHL2
Do not use blocking methods while holding a lock
Do not call 'Thread.sleep()' while holding a lock since doing so can cause poor performance and deadlocks
PVS-Studio

Include Page
PVS-Studio_V
PVS-Studio_V

V6095
ThreadSafe
Include Page
ThreadSafe_V
ThreadSafe_V

CCE_LK_LOCKED_BLOCKING_CALLS

Implemented
SonarQube
Include Page
SonarQube_V
SonarQube_V
S2276Implemented

Related Guidelines

Bibliography


...

Image Added Image Added Image AddedCON19-J. Notify all waiting threads instead of a single thread      11. Concurrency (CON)      CON21-J. Use thread pools to enable graceful degradation of service during traffic bursts